RAS BiologyМикология и фитопатология Mycology and Phytopathology

  • ISSN (Print) 0026-3648
  • ISSN (Online) 3034-5421

Study of physical properties of mycopolymers based on xylotrophic Agaricomycetes

PII
S0026364825020028-1
DOI
10.31857/S0026364825020028
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 59 / Issue number 2
Pages
111-119
Abstract
Using renewable resources to create polymeric materials is one of the ways to achieve sustainable development goals. The currently used hydrocarbon-based plastics decompose over a long time, accumulating and causing environmental pollution. One way to solve the problem of plastic waste is to develop polymers based on plant materials. Mycopolymers are completely biodegradable polymers consisting of lingo-cellulose particles. Mycelia of xylotrophic basidiomycetes are the binding component. The resulting material can be used as insulation, packaging, or in the manufacture of interior items and furniture. The following xylotrophic agaricomycetes were studied in the work, Pleurotus eryngii, P. ostreatus, Trametes hirsuta, T. versicolor, T. pubescens, T. ochracea, Phellinus igniarius, Fomitopsis pinicola, F. betulina, Ganoderma lucidum, G. applanatum, Fomes fomentarius and two types of substrates based on wood waste Populus tremula and Betula pendula. The most durable mycopolymers were obtained on the basis of Ganoderma applanatum and F. fomentarius.
Keywords
агарикомицеты биопластик культивирование базидиомицетов микополимеры растительные отходы трутовик плоский утилизация
Date of publication
15.09.2025
Year of publication
2025
Number of purchasers
0
Views
12

References

  1. 1. Abhijith R., Ashok A., Rejeesh C.R. Sustainable packaging applications from mycelium to substitute polystyrene: a review. Mater. Today Proc. 2018. V. 5 (1) P. 2139–2145. https://doi.org/10.1016/j.matpr.2017.09.211
  2. 2. Alemu D., Tafesse M., Mondal A.K. Mycelium‐based composite: the future sustainable biomaterial. Int. J. Biomaterials. 2022. V. 2022. № . 1. С. 8401528. https://doi.org/10.1155/2022/8401528
  3. 3. Alves R.M.E., Alves M.L., Campos M.J. Morphology and thermal behaviour of new mycelium-based composites with different types of substrates. In: International Conference of progress in digital and physical manufacturing. Springer, Cham, 2019, pp. 189–197.
  4. 4. Appels F.V., Camere S., Montalti M. et al. Fabrication factors influencing mechanical, moisture-and water-related properties of mycelium-based composites. Materials and Design. 2019. V. 161. С. 64–71. https://doi.org/10.1016/j.matdes.2018.11.027
  5. 5. Bruscato C., Malvessi E., Brandalise R.N. et al. High performance of macrofungi in the production of mycelium-based biofoams using sawdust-sustainable technology for waste reduction. J. Cleaner Production. 2019. V. 234. P. 225–232. https://doi.org/10.1016/j.jclepro.2019.06.150
  6. 6. Burova L.G. Ecology of macromycete fungi. Nauka, Moscow, 1986. (In Russ.)
  7. 7. Chan C.M., Vandi L.J., Pratt S. et al. Composites of wood and biodegradable thermoplastics: A review. Polymer Rev. 2018. V. 58 (3). P. 444–494. https://doi.org/10.1080/15583724.2017.1380039
  8. 8. Dias P.P., Jayasinghe L.B., Waldmann D. Investigation of mycelium-miscanthus composites as building insulation material. Results in Materials. 2021. V. 10. P. 100189. https://doi.org/10.1016/j.rinma.2021.100189
  9. 9. Du Y.L., Cao Y., Lu F. et al. Biodegradation behaviors of thermoplastic starch (TPS) and thermoplastic dialdehyde starch (TPDAS) under controlled composting conditions Polymer Testing. 2008. V. 27. № 8. P. 924–930. https://doi.org/10.1016/j.polymertesting.2008.08.002
  10. 10. Elsacker E., Søndergaard A., Van Wylick A. et al. Growing living and multifunctional mycelium composites for large-scale formwork applications using robotic abrasive wire-cutting. Construction and Building Materials. 2021. Т. 283. P. 122732. https://doi.org/10.1016/j.conbuildmat.2021.122732
  11. 11. Girometta C., Picco A.M., Baiguera R.M. et al. Physico-mechanical and thermodynamic properties of mycelium-based biocomposites: a review. Sustainability. 2019. V. 11 (1). P. 281. https://doi.org/10.3390/su11010281
  12. 12. Haneef M., Ceseracciu L., Canale C. et al. Advanced materials from fungal mycelium: fabrication and tuning of physical properties Scientific reports. 2017. V. 7 (1). P. 1–11. https://doi.org/10.1038/srep41292
  13. 13. Holt G.A., Mcintyre G., Flagg D. et al. Fungal mycelium and cotton plant materials in the manufacture of biodegradable molded packaging material: Evaluation study of select blends of cotton byproducts J. Biobased Materials and Bioenergy. 2012. V. 6 (4). С. 431–439. https://doi.org/10.1166/jbmb.2012.1241
  14. 14. Islam M.R., Tudryn G., Bucinell R. et al. Stochastic continuum model for mycelium-based bio-foam. Materials AND Design. 2018. V. 160. P. 549–556. https://doi.org/10.1016/j.matdes.2018.09.046
  15. 15. Jones M., Huynh T., Dekiwadia C. et al. Mycelium composites: a review of engineering characteristics and growth kinetics. J. Bionanosci. 2017. V. 11. P. 241–257. https://doi.org/10.1166/jbns.2017.1440
  16. 16. Kolpakova V.V., Usachev I.S., Sardzhveladze A.S. et al. Improvement of the technology of using thermoplastic starch for biodegradable polymer film. Pishchevaya promyshlennost. 2017. N8. P. 34–38. (In Russ.)
  17. 17. Krutko E.T., Prokopchuk N.R., Globa A.I. Technology of biodegradable polymer materials. Minsk, 2014. (In Russ.)
  18. 18. Lelivelt R.J.J., Lindner G., Teuffel P. et al. The production process and compressive strength of mycelium-based materials. In: First International Conference on bio-based building materials. 22–25 June 2015, Clermont-Ferrand, 2015, pp. 1–6.
  19. 19. López Nava J.A., Méndez González J., Ruelas Chacón X. et al. Assessment of edible fungi and films bio-based material simulating expanded polystyrene. Materials and Manufacturing Processes. 2016. V. 31 (8). P. 1085–1090. https://doi.org/10.1080/10426914.2015.1070420
  20. 20. Pavlovskaya N.E., Gagarina I.N., Gorkova I.V. et al. Optimization of the composition of polymer-starch compositions for the creation of packaging material and containers. Pishchevaya promyshlennost. 2019. N7. P. 8–11. (In Russ.) https://doi.org/10.24411/0235-2486-2019-10098
  21. 21. Pelletier M.G., Holt G.A., Wanjura J.D. et al. An evaluation study of mycelium based acoustic absorbers grown on agricultural by-product substrates. Industrial Crops and Products. 2013. V. 51. P. 480–485. https://doi.org/10.1016/j.indcrop.2013.09.008
  22. 22. Potoroko I. Yu., Malinin A.V., Tsaturov A.V. et al. Biodegradable materials based on plant polysaccharides for food packaging. Part 2: Process management of disposal Vestnik Yuzhno-Uralskogo gosudarstvennogo universiteta. Seriya: Pishchevye i biotekhnologii. 2020. V. 8 (4). P. 30–37. (In Russ.) https://doi.org/10.14529/food200404
  23. 23. Soh E., Chew Z.Y., Saeidi N. et al. Development of an extrudable paste to build mycelium-bound composites Materials and Design. 2020. V. 195. V. 109058. https://doi.org/10.1016/j.matdes.2020.109058
  24. 24. Sun W., Tajvidi M., Howell C. et al. Functionality of surface mycelium interfaces in wood bonding. ACS Applied Materials and Interfaces. 2020. V. 12 (51). P. 57431–57440. https://dx.doi.org/10.1021/acsami.0c18165
  25. 25. Sysuev V.A., Shirokikh I.G., Shirokikh A.A. et al. Fungi as a culture of agricultural production Agrarnaya nauka Evro-Severo-Vostoka. 2018. V. 62 (1). P. 4–10. (In Russ.) https://doi.org/10.30766/2072-9081.2018.62.1.04-10
  26. 26. Tacer-Caba Z., Varis J.J., Lankinen P. et al. Comparison of novel fungal mycelia strains and sustainable growth substrates to produce humidity-resistant biocomposites. Materials and Design. 2020. V. 192. P. 108728. https://doi.org/10.1016/j.matdes.2020.108728
  27. 27. Yang Z., Zhang F., Still B. et al. Physical and mechanical properties of fungal mycelium-based biofoam J. Materials Civil Engineering. 2017. V. 29 (7). С. 04017030. https://doi.org/10.1061/ (ASCE)MT.1943-5533.0001866
  28. 28. Бурова Л.Г. (Burova) Экология грибов макромицетов. М.: Наука, 1986. 224 с.
  29. 29. Колпакова В.В., Усачев И.С., Сарджвеладзе А.С. и др. (Kolpakova et al.) Совершенствование технологии применения термопластичного крахмала для биоразлагаемой полимерной пленки // Пищевая промышленность. 2017. № 8. С. 34–38.
  30. 30. Крутько Э.Т., Прокопчук Н.Р., Глоба А.И. (Krutko et al.) Технология биоразлагаемых полимерных материалов. Минск: Изд-во БГТУ, 2014. 105 с.
  31. 31. Павловская Н.Е., Гагарина И.Н., Горькова И.В. и др. (Pavlovskaya et al.) Оптимизация состава полимер-крахмальных композиций для создания упаковочного материала и тары // Пищевая промышленность. 2019. № 7. С. 8–11.
  32. 32. Потороко И.Ю., Малинин А.В., Цатуров А.В. и др. (Potoroko et al.) Биоразлагаемые материалы на основе растительных полисахаридов для упаковки пищевых продуктов. Часть 2: Управление процессами утилизации // Вестник Южно-Уральского государственного университета. Серия: Пищевые и биотехнологии. 2020. Т. 8. № 4. С. 30–37. https://doi.org/10.14529/food200404
  33. 33. Сысуев В.А., Широких И.Г., Широких А.А. и др. (Sysuev et al.) Грибы как культура сельскохозяйственного производства // Аграрная наука Евро-Северо-Востока. 2018. Т. 62. № 1. С. 4–10.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library