RAS BiologyМикология и фитопатология Mycology and Phytopathology

  • ISSN (Print) 0026-3648
  • ISSN (Online) 3034-5421

Psychrotolerant Strains of the Genus from Bottom Sediments of Lake Baikal as Promising Biopesticides’ Producers

PII
S30345421S0026364825040052-1
DOI
10.7868/S3034542125040052
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 59 / Issue number 4
Pages
313-325
Abstract
Among 54 psychrotolerant strains of 16 species of the genus isolated from the bottom grounds of Lake Baikal 12 strains were selected during sequential screening on solid and liquid media. Finally, 6 strains of the species and sp. were selected. They exhibited inhibitory action towards test-microorganisms INA 00760, ATCC6633, ATCC2091 or ATCC25922 as well as towards strains of phytopathogens VKM-B1247 and VKPM F-148. Maximum antibiotic activity was established for the culture fluid (CF) and CF concentrate of Trichoderma sp. 2d-4B strain during submerged cultivation against Pectobacterium carotovorum VKM-B1247 and Fusarium oxysporum VKPM F-148. Based on the data of the effective suppression of these phytopathogens and on an assessment of the effect of this strain on the germination of seeds of the monocotyledonous plant and the dicotyledonous plant and on the length of their sprouts it was shown that the strain sp. 2d-4B can be used to create a biopreparation.
Keywords
антимикробная активность биопестициды донный грунт Байкала психротолерантные штаммы фитопатогены Trichoderma
Date of publication
13.05.2025
Year of publication
2025
Number of purchasers
0
Views
28

References

  1. 1. Al-Surhanee A. A. Protective role of antifusarial eco-friendly agents (Trichoderma and salicylic acid) to improve resistance performance of tomato plants. Saudi J. Biol. Sci. 2022. V. 29 (4). P. 2933-2941. https://doi.org/10.1016/j.sjbs.2022.01.020
  2. 2. Babich O., Shevchenko M., Ivanova S. et al. Antimicrobial potential of microorganisms isolated from the bottom sediments of lake Baikal. Antibiotics (Basel). 2021. V. 10 (8). P. 927. https://doi.org/10.3390/antibiotics10080927
  3. 3. Bashenkhaeva M., Yeletskaya Y., Tomberg I. et al. Free-living and particle-associated microbial communities of lake Baikal differ by season and nutrient intake. Diversity. 2023. V. 15 (4). P. 572. https://doi.org/10.3390/d15040572
  4. 4. BLAST - Basic Local Alignment Search Tool. 2025. https://blast.ncbi.nlm.nih.gov/Blast.cgi. Accessed 02.02.2025.
  5. 5. Czajkowski R., Kaczyńska N., Jafra S. et al. Temperature-responsive genetic loci in pectinolytic plant pathogenic Dickeya solani. Plant Pathol. 2017. V. 66 (4). P. 584-594. https://doi.org/10.1111/ppa.12618
  6. 6. De Hoog G. S., Guarro J., Gené J., et al. Atlas of clinical fungi. CBS-KNAW, Fungal Biodiversity Centre, 3rd edn. Utrecht, 2011.
  7. 7. Domsch K. H., Gams W., Anderson T.-H. Compendium of soil fungi. IHW-Verlag et Verlagsbuchhandlung, 2nd edn. Eching, 2001.
  8. 8. Dutta P., Mahanta M., Singh S. B. et al. Molecular interaction between plants and Trichoderma species against soil-borne plant pathogens. Front. Plant. Sci. 2023. V. 14. Art. 1145715. https://doi.org/10.3389/fpls.2023.1145715
  9. 9. Егоров Н. С. (Egorov) Основы учения об антибиотиках. М.: Наука, 2004. 450 с. @@ Egorov N. S. Fundamentals of the doctrine of antibiotics. Nauka, Moscow, 2004. (In Russ.).
  10. 10. Egorov N. S. Fundamentals of the doctrine of antibiotics. Nauka, Moscow, 2004. (In Russ.).
  11. 11. Ephytia, INRAE portal. 2025. Pectobacterium carotovorum subsp. carotovorum (Jones 1901) Hauben et al. (1999). https://ephytia.inra.fr/en/C/27040/Eggplant-Pectobacterium-carotovorum. Accessed 20.05.2025.
  12. 12. Fedorova M. D., Kurakov A. V. Microbiota of bottom sediments in the coastal zone of lake Baikal. Contemp. Probl. Ecol. 2023. V. 16. P. 492-508. https://doi.org/10.1134/S1995425523040030
  13. 13. Fontana D. C., de Paula S., Torres A. G. et al. Endophytic fungi: biological control and induced resistance to phytopathogens and abiotic stresses. Pathogens. 2021. V. 10 (5). P. 570. https://doi.org/10.3390/pathogens10050570
  14. 14. Furhan J. Adaptation, production, and biotechnological potential of cold-adapted proteases from psychrophiles and psychrotrophs: recent overview. J. Genet. Eng. Biotechnol. 2020. V. 18 (1). P. 36. https://doi.org/10.1186/s43141-020-00053-7
  15. 15. Galachyants A. D., Krasnopeev A. Y., Podlesnaya G. V. et al. Diversity of aerobic anoxygenic phototrophs and rhodopsin-containing bacteria in the surface microlayer, water column and epilithic biofilms of lake Baikal. Microorganisms. 2021. V. 9 (4). P. 842. https://doi.org/10.3390/microorganisms9040842
  16. 16. GenBank. 2025. https://www.ncbi.nlm.nih.gov/genbank. Accessed 12.02.2025.
  17. 17. Goyer C., Ullrich M. S. Identification of low-temperature-regulated genes in the fire blight pathogen Erwinia amylovora. Can. J. Microbiol. 2006. V. 52 (5). P. 468-475. https://doi.org/10.1139/w05-153
  18. 18. ГОСТ 12038-84. (GOST) Семена сельскохозяйственных культур. Методы определения всхожести. М., 1984. @@ GOST 12038-84. Agricultural seeds. Methods for determination of germination. 1984. (In Russ.).
  19. 19. GOST 12038-84. Agricultural seeds. Methods for determination of germination. 1984. (In Russ.).
  20. 20. ГОСТ 33777-2016. (GOST) Поверхностно-активные вещества. Метод определения фитотоксичности на семенах высших растений. М., 2016. @@ GOST 33777-2016. Surface active agent. Method for the determination of phytotoxicity on seeds of higher plants. 2016. (In Russ.).
  21. 21. GOST 33777-2016. Surface active agent. Method for the determination of phytotoxicity on seeds of higher plants. 2016. (In Russ.).
  22. 22. Hagestad O. C., Andersen J. H., Altermark B. et al. Cultivable marine fungi from the Arctic Archipelago of Svalbard and their antibacterial activity. Mycology. 2020. V. 11 (3). P. 230-242. https://doi.org/10.1080/21501203.2019.1708492
  23. 23. Hassan N., Rafiq M., Hayat M. et al. Psychrophilic and psychrotrophic fungi: a comprehensive review. Rev. Environ. Sci. Biotechnol. 2016. V. 15 (2). P. 147-172. https://doi.org/10.1007/s11157-016-9395-9
  24. 24. Hitora Y., Sejiyama A., Honda K. et al. Fluorescent image-based high-content screening of extracts of natural resources for cell cycle inhibitors and identification of a new sesquiterpene quinone from the sponge, Dactylospongia metachromia. Bioorg. Med. Chem. 2021. V. 31. Art. 115968. https://doi.org/10.1016/j.bmc.2020.115968
  25. 25. Ibrar M., Ullah M. W., Manan S. et al. Fungi from the extremes of life: an untapped treasure for bioactive compounds. Appl. Microbiol. Biotechnol. 2020. V. 104. P. 2777-2801. https://doi.org/10.1007/s00253-020-10399-0
  26. 26. Index Fungorum. 2025. http://www.indexfungorum.org/Names/Names.asp. Accessed 20.03.2025.
  27. 27. Khuong N. Q., Nhien D. B., Thu L. T.M. et al. Using Trichoderma asperellum to Antagonize Lasiodiplodia theobromae Causing Stem-End Rot Disease on Pomelo (Citrus maxima). J. Fungi. 2023. V. 9 (10). P. 981. https://doi.org/10.3390/jof9100981
  28. 28. Krasnopeev A. Y., Ziemens E. A., Sukhanova E. V. et al. Bacterial community seasonal dynamics in lake Baikal littoral zone. Microbiology. 2024. V. 93 (Suppl 1). P. 40-44. https://doi.org/10.1134/S0026261724609151
  29. 29. Kulikova N. N., Suturin A. N., Boyko S. M. et al. The role of water lichens in the biogeochemical processes in the lake Baikal stony littoral. Inland Water Biol. 2009. V. 2 (2). P. 144-148.
  30. 30. Kurakov A. V., Fedorova M. D. Mycobiota of bottom sediments of lake Baikal. In: T. K. Antal, E. A. Bonch-Osmolovskaya, N. V. Pimenov (eds). Proceedings of the III Russian Microbiological Congress. Pskov, 2023, pp. 214-215.
  31. 31. Кузнецов Е. А. (Kuznetsov) Грибы водных экосистем. Дисс. … докт. биол. наук. М.: МГУ, 2003. 865 с. @@ Kuznetsov E. A. Fungi of aquatic ecosystems. Dr. Sci. Thesis. Moscow, 2003. (In Russ.).
  32. 32. Kuznetsov E. A. Fungi of aquatic ecosystems. Dr. Sci. Thesis. Moscow, 2003. (In Russ.).
  33. 33. Lanham P. G., Mcllravey K. I., Perombelon M. C.M. Production of cell wall dissolving enzymes by Erwinia carotovora subsp. atroseptica in vitro at 27 and 30.5 . J. Appl. Microbiol. 1991. V. 70 (1). P. 20-24. https://doi.org/10.1111/j.1365-2672.1991.tb03781.x
  34. 34. Mincheva E. V., Peretolchina T. E., Kravtsova L. S. et al. Hidden diversity of microeukaryotes in lake Baikal: a metagenomic approach. Limnol. Freshwater Biol. 2019. V. 1. P. 150-154. https://doi.org/10.31951/2658-3518-2019-A1-150
  35. 35. Ogaki M. B., Coelho L. C., Vieira R. et al. Cultivable fungi present in deep-sea sediments of Antarctica: taxonomy, diversity, and bioprospecting of bioactive compounds. Extremophiles. 2020. V. 24 (2). P. 227-238. https://doi.org/10.1007/s00792-019-01148x
  36. 36. Ogaki M. B., Teixeira D. R., Vieira R. et al. Diversity and bioprospecting of cultivable fungal assemblages in sediments of lakes in the Antarctic Peninsula. Fungal Biol. 2020. V. 124 (6). P. 601-611. https://doi.org/10.1016/j.funbio.2020.02.015
  37. 37. Palafox-Leal N.L., Castillo Batista J. Ch., Santos-Cervantes M.E. et al. Pectobacterium punjabense causing soft rot and blackleg of potato in Sinaloa, Mexico. Eur. J. Plant. Pathol. 2024. V. 168. P. 29-37. https://doi.org/10.1007/s10658-023-02725-9
  38. 38. Pandey A., Dhakar K., Jain R. et al. Cold adapted fungi from Indian Himalaya: untapped source for bioprospecting. Proc. Natl. Acad. Sci., India, Sect. B Biol. Sci. 2019. V. 89 (4). P. 1125-1132. https://doi.org/10.1007/s40011-018-1002-0
  39. 39. Polyakova M. S., Mincheva Е. V., Pudovkina Т.А et al. The first data on fungi and fungus-like organisms in Lake Baikal. Limnol. Freshwater Biol. 2020. V. 3 (4). P. 741-742. https://doi.org/10.31951/2658-3518-2020a4-741
  40. 40. Rabosky D. L. Evolutionary time and species diversity in aquatic ecosystems worldwide. Biol. Rev. 2022. V. 97 (6). P. 2090-2105. https://doi.org/10.1111/brv.12884
  41. 41. Rifai M. A. A revision on the genus Trichoderma. Mycol. Pap. 1969. V. 116. P. 1-56.
  42. 42. Rojo F. G., Reynoso M. M., Ferez M. et al. Biological control by Trichoderma species of Fusarium solani causing peanut brown root rot under feld conditions. Crop. Prot. 2007. V. 26 (4). P. 549-555. https://doi.org/10.1016/j.cropro.2006.05.006
  43. 43. Roshka Yu. A., Markelova N. N., Mashkova S. D. et al. Antimicrobial Potential of Secalonic Acids from Arctic-Derived Penicillium chrysogenum INA 01369. Antibiotics. 2025. V. 14 (88). https://doi.org/10.3390/antibiotics14010088
  44. 44. Senthil-Nathan S. A Review of biopesticides and their mode of action against insect pests. In: Thangavel P., Sridevi G. (eds). Environmental Sustainability. Springer, New Delhi, 2015, pp. 49-63.
  45. 45. Sharma A., Gupta B., Verm S. et al. Unveiling the biocontrol potential of Trichoderma. Eur. J. Plant. Pathol. 2023. V. 167. P. 569-591. https://doi.org/10.1007/s10658-023-02745-5
  46. 46. Smadja B., Latour X., Trigui S. et al. Thermodependence of growth and enzymatic activities implicated in pathogenicity of two Erwinia carotovora subspecies (Pectobacterium spp.). Can. J. Microbiol. 2004. V. 50 (1). P. 19-27. https://doi.org/10.1139/w03-099
  47. 47. Smirnova A., Li H., Weingart H. et al. Thermoregulated expression of virulence factors in plant-associated bacteria. Arch. Microbiol. 2001. V. 176 (6). P. 393-399. https://doi.org/10.1007/s002030100344
  48. 48. Sonkar S. S., Bhatt J., Meher J. et al. Bio-efficacy of Trichoderma viride against the root-knot nematode (Meloidogyne incognita) in tomato plant. J. Pharmacogn. Phytochem. 2018. V. 7 (6). P. 2010-2014.
  49. 49. Sparks T.C, Sparks J.M, Duke S. O. Natural product-based crop protection compounds - origins and future prospects. J. Agric. Food. Chem. 2023. V. 71 (5). P. 2259-2269. https://doi.org/10.1021/acs.jafc.2c06938
  50. 50. Ullrich M. S., Schergaut M., Boch J. et al. Temperature-responsive genetic loci in the plant pathogen Pseudomonas syringae pv. glycinea. Microbiology. 2000. V. 146 (10). P. 2457-2468. https://doi.org/10.1099/00221287-146-10-2457
  51. 51. Yi Z., Berney C., Hartikainen H. et al. High-throughput sequencing of microbial eukaryotes in Lake Baikal reveals ecologically differentiated communities and novel evolutionary radiations. FEMS Microbiol. Ecol. 2017. V. 93 (8). https://doi.org/10.1093/femsec/fix073
  52. 52. Zemskaya T. I., Cabello-Yeves P. J., Pavlova O. N. et al. Microorganisms of Lake Baikal - the deepest and most ancient lake on Earth. Appl. Microbiol. Biotechnol. 2020. V. 104. P. 6079-6090. https://doi.org/10.1007/s00253020-10660-6
  53. 53. Zenteno-Alegría C.O., Yarzábal Rodríguez L. A., Ciancas Jiménez J. et al. Fungi beyond limits: The agricultural promise of extremophiles. Microb Biotechnol. 2024. V. 17 (3). e14439. https://doi.org/10.1111/1751-7915.14439
  54. 54. Zhan X., Wang R., Zhang M. et al. Trichoderma-derived emodin competes with ExpR and ExpI of Pectobacterium carotovorum subsp. carotovorum to biocontrol bacterial soft rot. Pest. Manag. Sci. 2024. V. 80. P. 1039-1052. https://doi.org/10.1002/ps.7835
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library