ОБНМикология и фитопатология Mycology and Phytopathology

  • ISSN (Print) 0026-3648
  • ISSN (Online) 3034-5421

Новые для России виды Arrhenia из Республики Алтай (Западная Сибирь)

Код статьи
S0026364825010049-1
DOI
10.31857/S0026364825010049
Тип публикации
Статья
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том 59 / Номер выпуска 1
Страницы
27-33
Аннотация
Приводятся сведения о новых для России видах Arrhenia leucotricha и A. subglobisemen, обнаруженных на территории Республики Алтай. Видовая идентичность образцов подтверждена морфологическим и молекулярно-генетическим методами. Морфологические особенности в целом совпадают с типовыми описаниями таксонов. Анализ последовательности ITS nrDNA показал, что последовательности новых находок имеют высокое сходство с типовыми образцами A. leucotricha и A. subglobisemen.
Ключевые слова
грибы новые находки ревизия фунга Agaricales Arrhenia ITS
Дата публикации
15.09.2025
Год выхода
2025
Всего подписок
0
Всего просмотров
10

Библиография

  1. 1. Altschul S.F., Gish W., Miller W. et al. Basic local alignment search tool. J. Molec. Biol. 1990. V. 215 (3). P. 403–410. https://doi.org/10.1016/S0022-2836 (05)80360-2
  2. 2. Barrasa J.M., Rico V.J. The non-omphalinoid species of Arrhenia in the Iberian Peninsula. Mycologia. 2003. V. 95 (4). P. 700–713.
  3. 3. Blanco Dios J.B. Notes on the genus Arrhenia (I): Arrhenia pontevedrana, sp. nov. and A. subglobisemen (Agaricales, Basidiomycota), from the northwest of the Iberian Peninsula. January Studies in Fungi. 2019. V. 4 (1). P. 185–191. https://doi.org/10.5943/sif/4/1/20
  4. 4. Bolshakov S., Kalinina L., Palomozhnykh E. et al. Agaricoid and boletoid fungi of Russia: the modern country-scale checklist of scientific names based on literature data. Biological communication. 2021. V. 66 (4). P. 316–325. https://doi.org/10.21638/spbu03.2021.404
  5. 5. Clémençon H. Methods for working with macrofungi: Laboratory cultivation and preparation of larger fungi for light microscopy. Zurich, 2009.
  6. 6. Corriol G. Arrhenia subglobisemen, un nouveau nom pour Agaricus tremulus sensu Persoon, Fries. Bull. Trim. Féderation Mycol. Dauphiné-Savoie. 2016. V. 222. P. 5–20.
  7. 7. Gardes M., Bruns T.D. ITS primers with enhanced specifity for Basidiomycetes: application to identification of mycorrhizae and rusts. Molec. Ecology. 1993. V. 2. P. 113–118.
  8. 8. GBIF Occurrence Download (Arrhenia subglobisemen). 2024. https://doi.org/10.15468/dl.vprjs2
  9. 9. Gorbunova I.A. Macromycetes of the alpine region of Altai. Turczaninowia. 2010. V. 13 (3). P. 125–134. (In Russ.).
  10. 10. Gorbunova I., Filippova N. Fungarium of Gorbunova Irina A. (Central Siberian Botanical Garden, NSK). Yugra State University Biological Collection (YSU BC). 2024. Occurrence dataset. https://doi.org/10.15468/upme2c. Accessed 31.01.24.
  11. 11. Guindon S., Dufayard J.F., Lefort V. et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Systematic Biol. 2010. V. 59. P. 307–321.
  12. 12. Hoang D.T., Chernomor O., Haeseler A. v. et al. UFBoot2: Improving the ultrafast bootstrap approximation. 2017. Molec. Biol. Evol. V. 35 (2). P. 518–522. https://doi.org/10.1093/molbev/msx281
  13. 13. Ivolov A.V., Bolshakov S. Yu., Silaeva T.V. Study of species diversity of macromycetes. Saransk, Mord. St. University, Saransk, 2017. (In Russ.)
  14. 14. Kalyaanamoorthy S., Minh B.Q., Wong T. et al. ModelFinder: Fast model selection for accurate phylogenetic estimates. Nature Methods. 2017. V. 14. P. 587–589. https://doi.org/10.1038/nmeth.4285
  15. 15. Kazutaka K., John R., Kazunori D.Y. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief. Bioinformatics. 2019. V. 20 (4). P. 1160–1166. https://doi.org/10.1093/bib/bbx108
  16. 16. Knudsen H., Vesterholt J. Funga Nordica. Agaricoid, boletoid, clavarioid, cyphelloid and gastroid genera. Nordsvamp, Copenhagen, 2018.
  17. 17. Koichiro T., Glen S., Sudhir K. MEGA11: Molecular evolutionary genetics analysis. Vers. 11. Molec. Biol. Evol. 2021. V. 38 (7). P. 3022–3027. https://doi.org/10.1093/molbev/msab120
  18. 18. Nguyen L.T., Schmidt H.A., Haeseler A.V. et al. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum likelihood phylogenies. Molec. Biol. Evol. 2015. V. 32. P. 268–274. https://doi.org/10.1093/molbev/msu300
  19. 19. Voitk A., Saar I., Lücking R. et al. Surprising morphological, ecological and ITS sequence diversity in the Arrhenia acerosa complex (Basidiomycota: Agaricales: Hygrophoraceae). Sydowia. 2020. V. 73. P. 133–162. https://doi.org/10.12905/0380.sydowia73-2020-0133
  20. 20. Rambaut А. FigTree v1.4.4. 2006–2018. https://github.com/rambaut/figtree/releases/tag/v1.4.4
  21. 21. White T.J., Bruns T., Taylor J. Amplification and direct se-quencing of fungal ribosomal RNA genes for phylogenetics. In: M.A. Innis et al. (eds). PCR protocols: a guide to methods and applications, 1990, pp. 315–322.
  22. 22. Горбунова И.А. (Gorbunova) Макромицеты альпийской области Алтая. Turczaninowia. 2010. № 13 (3). С. 125–134.
  23. 23. Ивойлов А.В., Большаков С.Ю., Силаева Т.Б. (Ivoylov et al.) Изучение видового разнообразия макромицетов: учеб. пособие. Саранск: Изд-во Мордов. ун-та, 2017. 160 с.
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека